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Abstract—Researchers in various fields are using optical mi-
croscopy to acquire very large images, 10 000–200 000 of pixels
per side. Optical microscopes acquire these images as grids of
overlapping partial images (thousands of pixels per side) that are
then stitched together via software. Composing such large images
is a compute and data intensive task even for modern machines.
Researchers compound this difficulty further by obtaining time-
series, volumetric, or multiple channel images with the resulting
data sets now having or approaching terabyte sizes.

We present a scalable hybrid CPU-GPU implementation of
image stitching that processes large image sets at near interactive
rates. Our implementation scales well with both image sizes and
the number of CPU cores and GPU cards in a machine. It
processes a grid of 42×59 tiles into a 17k×22k pixels image in
43 s (end-to-end execution times) when using one NVIDIA Tesla
C2070 card and two Intel Xeon E-5620 quad-core CPUs, and in
29 s when using two Tesla C2070 cards and the same two CPUs.
It also composes and renders the composite image without saving
it in 15 s. In comparison, ImageJ/Fiji, which is widely used by
biologists, has an image stitching plugin that takes > 3.6 h for
the same workload despite being multithreaded and executing the
same mathematical operators; it composes and saves the large
image in an additional 1.5 h.

This implementation takes advantage of coarse-grain paral-
lelism. It organizes the computation into a pipeline architecture
that spans CPU and GPU resources and overlaps computation
with data motion. The implementation achieves a nearly 10x
performance improvement over our optimized non-pipeline GPU
implementation and demonstrates near-linear speedup when
increasing CPU thread count and increasing number of GPUs.

Keywords-Hybrid systems, Parallel Architectures, Heteroge-
neous (hybrid) systems, Scheduling and task partitioning

I. INTRODUCTION

Image Stitching comes up in Optical Microscopy because
of a scale mismatch between the dimensions of a plate being

examined and the microscope’s Field Of View (FOV). For
example, the region of interest in a plate is measured in cm
(e.g., 2× 2 cm2) whereas the FOV for a 10x objective is one
order of magnitude smaller per side (< 1× 1mm2).

To image a plate, a microscope scans the plate as it
travels under the optical column by distances smaller than
the FOV and generates overlapping partial images or tiles;
a software tool then assembles the tiles into a plate image.
This reconstruction requires computing the (x, y) translations
between adjacent images because the image overlap distances
vary during an experiment from their preset values due to
the mechanical properties of the microscope’s stage, actuator
backlashes, and camera angle.

Long-running experiments impose an additional time-based
requirement on image stitching as plates are imaged period-
ically. Image stitching must reconstruct a plate image in a
fraction of the imaging period to allow researchers enough
time to examine and analyze the acquired images and, if
need be, intervene in these long-running experiments. Such
a capability is essential to transform experiments from being
simply automated to ones that are computationally steerable.

As an example, biologists at the National Institute of
Standards and Technology (NIST) are using automated optical
microscopes to study cell colony behavior over 5 days. In these
experiments, the plate is 2×2 cm2 and is scanned every 45min
to produce two tile grids, one per color channel; each grid
consists of up to 10 000 tiles depending on the microscope’s
overlap and magnification settings. A particular experiment,
which produced one of the smaller dataset, scanned a plate
161 times, produced 2 grids of 18×22 tiles per scan, with each
tile having 1392× 1040 16-bit grayscale pixels. The resulting
raw image data had a size of 344GB.



The main motivation of this work is achieving scalable
image stitching. There are two major challenges to realizing
this goal. The first challenge relates to computational time.
Scanning a plate takes between 15 and 45min depending on
a microscope’s overlap and magnification settings. Stitching
should reconstruct a plate image in a fraction of the time
needed to scan a plate in order to give researchers enough time
to (1) analyze the resulting image and derive measurements
from it via an image segmentation tool for example—yet
another potentially time-consuming task—and (2) decide if
there is a need to intervene in the running experiment.

The second challenge is algorithmic. Optical microscopy
can generate images with few distinguishable features in the
overlap region that can be used to guide stitching. This occurs
often in the early phases of live cell experiments when cell
colonies are seeded at low densities and the colonies have
not expanded to cover most of the plate. This lack of distin-
guishable features makes it difficult to determine the relative
positioning of two adjacent tiles and rules out a large class of
stitching algorithms with good performance characteristics.

To quantify our approach’s results, we will measure its
performance when processing an imaging dataset of A10 cell
colonies acquired by NIST biologists using an Olympus IX71
microscope with a 10x lens and an infrared camera. The
images form a grid of 42×59 tiles. Each tile is a 1040×1392
16-bit grayscale image; they are each 2.76MB in size and
cover an area of 896.44 µm×669.76 µm. The size of the dataset
is 6.68GB. Our evaluation machine has two Intel Xeon E-5620
CPUs (quad-core with hyper-threading), 48GB of RAM, and
two NVIDIA Tesla C2070 GPU cards. We will also compare
our execution times and results with the ImageJ/Fiji stitching
plugin [1]–[3]; this comparison is critical given the widespread
adoption of ImageJ/Fiji and its plugins within the bio-imaging
informatics community. The stitching plugin took more than
3.6 h to compute displacements for the plate image and an
additional 1.5 h to compose and save the stitched image which
has 14 579× 12 290 pixels.

A. Approach and Contributions

Our work uses a Fourier-based approach to image stitching
which we describe in Section II. We present and compare
several implementations and detail a hybrid CPU-GPU im-
plementation which achieves end-to-end processing times of
49.7 s for a 42× 59 grid of tiles on a machine with one high-
end GPU card. Such execution times transform image stitching
into a quasi-interactive task and are more than two orders of
magnitude better than those of ImageJ/Fiji which takes nearly
3.6 h for the same workload. Furthermore, these execution
times compare favorably with other published timing results
for similar problems using GPUs [4]. Lastly, these imple-
mentations lay the foundation to developing a software stack
that supports computationally steerable experiments centered
around optical microscopy.1

1The implementations are currently available upon request from the authors;
they will be posted on the web along with a reference dataset in the near future.

The hybrid CPU-GPU implementation takes advantage of
coarse grain parallelism and organizes the computation as a
pipeline of functional stages (reading, computing, and book-
keeping). Each stage consists of one or more CPU threads,
some of which interact with GPUs. The pipeline overlaps
various computations that take place on CPU or GPU cores
with data transfers between disk, main memory, and graphics
memory. This pipeline implementation provides a near 11.2x
performance improvement over a basic approach to GPU-
based acceleration and can be used to address other problems
where coarse-grained parallelism is available.

B. Organization

The rest of the paper is organized as follows: section II
discusses alternative approaches underlying image stitching
algorithms; section III describes in detail the Fourier-based
image stitching algorithm used in this study; sections IV and V
present the implementations that were developed and discuss
their performance; section VI then concludes and outlines
possible extensions.

II. IMAGE STITCHING ALGORITHMS & RELATED WORK

Szeliski discusses many algorithms for finding the proper
alignment of image tiles [5]. These algorithms fall into two
categories: feature-based alignment techniques [6], [7] and
direct methods [8], [9].

In our study, we use a direct method, a version of Kuglin
and Hines’ phase correlation image alignment method [8]
that is modified to use normalized correlation coefficients
as described by Lewis [10], [11]. This method uses Fast
Fourier Transforms (FFTs) to compute Fourier Correlation
Coefficients and then uses these correlation coefficients to
determine image displacements. In our context, the Fourier-
based approach is advantageous because it has predictable
parallelism. It is also more robust for optical microscopy as it
does not depend on detecting features in images where features
may be sparse (e.g., in live cell microscopy images).

The literature reports on feature-based approaches that work
for some microscopy images. For example, the AutoStitch
software [12] implements Brown and Lowe’s scale-invariant
feature transform [13]. Ma et al. report successfully using
AutoStitch to process microscopy images [7]. However, they
used images that are feature-rich.

Cooper, Huang, and Ujaldon use a feature-based algorithm
in an implementation aimed at clusters with CPU and GPU
compute nodes [14]. Their implementation uses a combination
of FFT-based normalized cross-correlation and feature detec-
tion. They report performance numbers using a data set with
feature rich images that are much larger than the ones we use
(16k × 16k and 23k × 62k pixels). Their study demonstrates
the feasibility of using a hybrid CPU-GPU implementation
running on a cluster to improve image-stitching performance.
However, the improvement is less than can be achieved by the
hardware because their implementation was not designed to
hide data transfer latencies.



Preibisch, Saalfeld, and Tomanak describe an ImageJ/Fiji
plugin for image stitching [15]. This plugin uses a direct ap-
proach to compute image displacements and is multi-threaded
to improve performance. Our implementation uses the same
approach for computing relative displacements. However, it is
focused on handling the scale issue and on taking advantage
of accelerator technologies to improve performance.

III. COMPUTATION

Image stitching operates in three phases. The first phase
computes relative displacements for adjacent image pairs.
These displacements form an over-constrained system that one
can represent as a directed graph where vertices are images
and edges relate adjacent images. The over-constraint in the
system is due to the equivalence between absolute displace-
ments of images and path summations in the graph which
must be path invariant. The second phase resolves the over-
constraint in the system and computes absolute displacements.
It selects a subset of the relative displacements or uses a global
optimization approach to adjust them to a path invariant state
in the graph. The third phase uses the absolute displacements
to compose the stitched image.

This work focuses on the first phase of the algorithm,
namely the relative displacements computation phase, as it is
the more compute-intensive phase. The second phase is much
lighter computationally while the third phase can be carried
out on demand as part of visualizing the stitched image.
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Fig. 1. Computation for Two Adjacent Images

Fig. 1 shows the data flow graph for computing the relative
displacement between two adjacent images, i and j (east-west
or north-south). The steps are outlined below and use the same
step numbers as in the data flow graph.

1) Read image files, Fi and Fj , into objects Ii and Ij .
2) Compute the 2D Fourier transforms, FFTi and FFTj .
3) Compute the image pair’s Normalized Correlation Co-

efficient (NCCij). This is the element-wise normalized
conjugate multiplication of two complex vectors.

4) Compute the 2D inverse Fourier transform of the nor-
malized correlation coefficient (NCC−1

ij ).
5) Reduce the inverse transform to its maximum (maxij)

and map it back to image coordinates (x, y).
Fourier transforms are periodic in nature. As such, the
overlap distances, x and y, are ambiguous and can be
interpreted as x or (w − x) and y or (h− y).

6) Compute the Cross-Correlation Factors (CCF1..4
ij ). Each

cross-correlation factor corresponds to one of the four
overlap modes, (x or w−x), (y or h− y), (x or y), and
(w − x or h− y).

7) Find CCFmax
ij and map it back to (x, y)ij .

Fig. 2 lists the pseudo-code corresponding to steps 2–7. Fig. 3
shows the pseudo-code for the CCF function. Fig. 4 shows
the computation for the whole grid; it repeats the pair-wise
computation for all adjacent image pairs.

// Function pciam(Ii, Ij)
Input: two image arrays—same size!
Output: tuple—max correlation, x-disp & y-disp

1 begin
2 FFTi ←− FFT_2d(Ii) // Forward FFTs
3 FFTj ←− FFT_2d(Ij)

// Normalized Correlation Coeff.
4 fc ←− FFTi .× FFTj // elt wise op
5 NCCij ←− fc ./ abs(fc) // normalize

// max in Inverse FFT
6 NCC−1

ij ←− iFFT_2d(NCCij)
7 [max, y, x]ij ←− max(abs(NCC−1

ij ))

// Consider four combinations
8 c1 ←− ccf(Ii[y:H, x:W], Ij[0:H-y, 0:W-x])
9 c2 ←− ccf(Ii[y:H, W-x:W], Ij[0:H-y, 0:x])

10 c3 ←− ccf(Ii[H-y:H, x:W], Ij[0:y, 0:W-x])
11 c4 ←− ccf(Ii[H-y:H, W-x:W], Ij[0:y, 0:x])

12 return max([c1, x, y], [c2, W-x, y], [c3, x,
H-y], [c4, W-x, H-y])

13 end

Fig. 2. Algorithm: Relative Displacement of Adjacent Images

// Function ccf(I1, I2)
Input: two image arrays—same size!
Output: cross correlation factor (double)

1 begin
2 I1 ←− I1 − mean(I1) // Center both vectors
3 I2 ←− I2 − mean(I2)

4 return (I1.I2)/(|I1|.|I2|) // norm. dot prod.
5 end

Fig. 3. Algorithm: Fourier Cross Correlation

Input: Grid of image tiles
Output: 2 arrays of tuples ([correlation, x, y])

1 begin
2 foreach I ∈ Grid of Tiles do
3 translations-west[I] ← pciam(I , I#west)
4 translations-north[I] ← pciam(I#north, I)
5 end
6 end

Fig. 4. Algorithm: Grid Relative Displacements

The image stitching algorithm is compute-bound and is
dominated by Fourier transform computations. Table I shows
the count and complexity of operations as well as the sizes of
the operands in these operations; in the table, n and m denote
the grid size while h and w give the size of the partial images.
Processing an n×m grid performs (3nm−n−m) forward and
backward 2-D Fourier transforms on double complex numbers.
The cost of each transform is O(hw log(hw)) when h and w
have a special form, a power of small prime numbers (e.g., 2,



3, 5, & 7) or a product of such powers, and the FFT library
uses a divide and conquer approach to take full advantage
of the recursive formulation of FFT. For optical microscopy,
there is no guarantee that the partial images will have such nice
dimensions and the cost of these transforms may be substan-
tially higher. The image stitching computation also includes a
large number of vector multiplications and reductions; these
operations can become comparatively expensive unless they
are implemented using hardware vector instructions.

Operation Operation Operand
Operation Count Cost Size (B)

Read n×m h× w 2hw

FFT-2D n×m hw log(hw) 16hw

⊗ 2nm− n−m h× w 16hw

FFT-2D−1 2nm− n−m hw log(hw) 16hw

/max 2nm− n−m h× w 16hw

CCF1..4 2nm− n−m h× w 4hw

TABLE I
OPERATION COUNTS & COMPLEXITIES

For the class of problems under consideration (grids with
thousands of tiles), the relative displacement computation
exhibits a high degree of coarse-grain parallelism: computing
the forward transforms of all images (FFTs), computing the
normalized correlation coefficients of all adjacent image pairs
(NCCs), computing the inverse transforms of all NCCs, etc.
However, these are not embarrassingly parallel because of data
dependencies and memory size limits.

There are two sets of computed entities with multiple
dependencies, NCCij and CCF1..4

ij . A parallel implementation
must explicitly handle these data dependencies across both
CPU and GPU threads.

A scalable parallel implementation must manage memory
because the problem does not fit into main memory, let alone
GPU memory. Each transform takes up nearly 22MB in
RAM. This results in a total of 53.5GB just for the forward
transforms of the grid. Such a size is well beyond the capacity
of most machines. It will have a highly negative effect on
performance when the program’s working set exceeds physical
memory limits and the virtual memory subsystem starts paging
to disk. This constraint is substantially more severe with GPUs
where even high end GPUs are often limited to 6GB.

Fig. 5 illustrates this point further. It plots the speedup of
a simple multi-threaded application on the same evaluation
machine but with 24GB of RAM only; this application reads
tiles and computes their transforms without releasing any
memory. The figure clearly shows the speedup falling off a
cliff, across all thread counts, when the tile count changes
from 832 to 864; a similar plot of execution times exhibits the
same behavior.

The challenges in developing parallel implementations lie in
exploiting the available coarse grain parallelism by scheduling
computations on the available computing resources (CPU and
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Fig. 5. Virtual Memory Performance Cliff

GPU cores) as early as possible without violating any of the
data dependency constraints and memory size limits.

IV. IMPLEMENTATIONS

This section describes the reference sequential implementa-
tions that we have developed as well as the parallel ones that
take advantage of the available hardware.

Our evaluation machine was described in Section I. It
has the following hardware specifications: two Intel Xeon E-
5620 CPUs, 46GB of RAM, and two NVIDIA Tesla C2070
cards with 6GB of GDDR5 memory. The machine is running
Ubuntu Linux 12.04/x86 64, kernel v. 3.2.0, and Libc6 v. 2.15.
The rest of the software stack consists of libstd++6 v. 4.6,
BOOST v. 1.48 [16], GCC v 4.6.3 with -O3 optimization,
and NVIDIA CUDA and cuFFT v. 5.5.

A. Reference Implementations

We developed two reference implementations: (1) a sequen-
tial CPU-only version and (2) a simple GPU version that is
almost a direct port of the sequential CPU version. We label
these two implementations, Simple-CPU and Simple-GPU.

The reference CPU-only sequential implementation reads
images using libTIFF4 v. 3.9.5 [17] and uses FFTW3 v. 3.3
[18], [19] to compute Fourier transforms. We explicitly coded
the functions for the element-wise vector multiplication and
the max reduction with SSE intrinsics because the compiler be-
ing used (GCC v. 4.6.3 with -O3 optimization and -msse2)
was not generating such code.

FFTW is an auto-tuning library; it operates in two modes,
planning and execution. It first generates a plan, based on
problem and machine characteristics, and then executes it.
FFTW planning can be expensive. However, this cost is
amortized by saving a plan and reusing it. We experimented
with and decided to use FFTW’s patient planning mode
as it demonstrated similar performance to the measure and
exhaustive planning modes, while only taking 4min 20 s to
generate (measure and exhaustive planning took 4min 20 s and



Fig. 7. Profile of a 0.2 s Interval of Simple-GPU Execution (8× 8 grid)

7min 1 s respectively). Using patient planning mode yielded
a 2x improvement in computing FFTs compared to estimate
planning mode for 1392× 1040 image sizes.

This implementation used a strategy of freeing memory as
early as possible: freeing an image’s transform memory as
soon as the relative displacements of its eastern, southern,
western, and northern neighbors were computed. For this pur-
pose, this implementation supported multiple traversal orders
of the grid (row, column, diagonal, and their chained coun-
terparts). The chained-diagonal traversal order gave the best
performance because it allowed memory to be freed earlier
than the other traversal orders. Consequently, the chained-
diagonal traversal order became the default.

The Simple-CPU implementation computes the relative dis-
placements for the 42× 59 grid on the evaluation machine in
10.6min with 80% of this time spent on Fourier transforms.

We used the Simple-CPU implementation to develop a
simple multi-threaded implementation MT CPU. This imple-
mentation uses spatial domain decomposition and a thread-
variant of the SPMD (Single Program Multiple Data) approach
to handle coarse-grained parallelism. The best execution time
was 96 s with 16 threads, which is a 6.6x speedup over the
Simple-CPU implementation.

The first GPU implementation, Simple-GPU, is almost a
direct port of the CPU sequential version. It maintains the
sequential architecture of the Simple-CPU implementation,
but invokes operations on the GPU which takes advantage
of the GPU’s massively parallel architecture. Fig. 6 illustrates
the data flow underlying this implementation; in this figure,
entities that reside in GPU memory are shaded in gray. FFT
operations are done using NVIDIA’s cuFFT library v 5.5 [20].
The NCCij and maxij computations are performed by custom
CUDA kernels that implements common CUDA optimizations
(decomposing operations to maximize active blocks, shared
memory, etc.).
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Fig. 6. Data Flow in Sequential GPU Implementation

The reference GPU implementation is single threaded on
the CPU, executes CUDA memory copies synchronously, and
invokes all kernels on the default stream. This implementation

stitches the 42× 59 grid in 9min 16 s, a mere 1.14x speedup
over the reference CPU-only sequential implementation. This
implementation was not expected to be much faster than
its CPU counterpart. Nevertheless, it included several perfor-
mance improvement measures:

• It uses the NVIDIA cuFFT library to compute FFTs. The
tiles in our data set are 1392× 1040; these sizes are not
powers of small primes and, as such, do not play well
with the divide-and-conquer approach implemented by
most FFT libraries. Nevertheless, a CPU-GPU compari-
son reveals that cuFFT is ≈ 1.5 times faster than FFTW
running in patient planning mode, excluding data transfer
costs.

• It computes forward transforms once per tile and keeps
them in GPU memory ready to be reused. It frees a
transform’s GPU memory when the NCCs of a tile’s four
neighbors have been computed.

• It uses a custom CUDA kernel to compute the normalized
cross correlations; this kernel uses shared memory and
maximizes the graphics card occupancy. It is ≈ 2.3x
faster than the corresponding CPU function, excluding
data transfer costs.

• It uses a custom CUDA kernel to perform the max
reduction and determine its index. This kernel borrows
optimization ideas from Mark Harris’s optimized reduc-
tion kernel [21] and is ≈ 1.5 times faster than the
corresponding CPU function which uses SSE intrinsics,
excluding data transfer costs.

• It allocates a pool of buffers in GPU memory for FFT
transforms and keeps track of the buffers to help manage
the limited memory available on the GPU.

• It minimizes transfers from device to host memory by
only copying the result of the parallel reduction.

To better understand why the Simple-GPU implementation
did not yield better performance, we used NVIDIA’s visual
profiler [22]. Fig. 7 shows a 0.2 s interval of a stitching
computation sample run (8 × 8 grid) as visualized by the
profiler (out of 15.9 s). The profile illustrates that only one
kernel executes on the GPU at a time; this correlates with
the single CUDA stream. It also reveals gaps between kernel
invocations that account for CCF computations on the CPU
and CPU-GPU memory copies.

The major issues with the Simple-GPU implementation
are synchronously invoking kernels, waiting for CPU reads
and CCF computations, and copying between CPU and GPU
memories. Each of these uses valuable cycles and keeps the



GPU unoccupied. To overcome these problems, we decided
to restructure the code with the goals of (1) overlapping data
transfers with GPU computations and (2) overlapping CPU
tasks such as reading and computing the CCFs.

B. Pipelined GPU Implementation

The pipelined GPU implementation, Pipelined-GPU, orga-
nizes the image stitching computation into a pipeline of six
producer-consumer stages with the option of having multiple
threads per stage.

It establishes one execution pipeline per GPU and, as such,
readily takes advantage of multiple GPUs. It decomposes the
image grid spatially and allocates one partition per GPU.

Fig. 8 shows the stages of the pipeline. Each stage has an
input and an output queue; the threads of a stage consume from
its input queue and add items to its output queue. These queues
have monitor implementations to prevent race conditions.

Q01 read Q12 copier Q23 FFT Q34 BK1 Q45 Disp

GPU0 Pipeline

BKnQ34FFTQ23copierQ12readQ01 Q45 Disp

GPUn Pipeline

Q56 CCF
...

Threads ≥ 1 ≥ 1 ≥ 1 1 ≥ 1

≥ 1

Stage 1 2 3 4 5

6

Fig. 8. Multi-GPU Pipeline Architecture

Each execution pipeline processes images as described
below where the term thread refers to CPU threads:

1) One thread reads image tiles.
2) One thread copies tile data from CPU to GPU memory.
3) One thread initiates FFT computations on the GPU.

NVIDIA’s cuFFT implementation (v. 5.5) allocates a
large number of registers on the NVIDIA Fermi archi-
tecture. This prevents the GPU from executing cuFFT
kernels concurrently; the pipeline architecture handles
this by launching one such computation at a time.

4) One thread manages the state of the computation. It
resolves dependencies and advances pairs of adjacent
tiles that are ready (i.e., their FFTs are available) to the
next stage.

5) One thread invokes the relative displacement compu-
tation (NCC, FFT−1, and max reduction) on pairs of
adjacent tiles (north-south or east-west) on the GPU.
This stage copies the index of the maximum, a single
scalar, from GPU to CPU memory. It also adds an entry
to the queue between stages 3 and 4 to handle memory
management.

6) Multiple threads, based on the number of available CPU
cores, carry out CCF computations. Each thread maps
the index of the max, found in the previous stage, to im-
age coordinates and computes the four CCF1..4

ij values.
This yields the final x and y relative displacements for
the image pair.

The system has special measures for memory management.
It allocates a memory pool on the GPU for each pipeline as

part of initialization. The system allocates GPU memory only
once to avoid any further allocations which would force a
global synchronization on all kernels and memory transfers.
The pool consists of a fixed number of buffers, one per trans-
form (forward or backward). The size of the pool effectively
limits the number of images in flight. Furthermore, every tile
has a reference count that is decremented when the tile is used
to compute a relative displacement. The system recycles the
GPU buffer associated with a tile when its reference count
reaches zero; this guarantees that the system does not run out
memory. The minimum pool size must exceed the smallest
dimension of the image grid; using the chained diagonal grid
traversal ensures that the system starts recycling GPU buffers
as early as possible.

The pipeline architecture uses one CUDA stream per stage
to enable the overlapping of asynchronous memory transfers
and kernel executions on the GPU. The profile shown in Fig. 7
demonstrated that this functionality is essential to improving
performance.

Fig. 9 shows a 0.2 s interval of the Pipelined-GPU’s visual
profile (out of a total of 1.6 s) which shows a much higher
kernel execution density (see “CUDA Kernel Computations”
row in Fig. 9). This profile does not have the gaps observed
in Fig. 7. This is due to (1) having dedicated CPU threads
for executing the CCF computations, (2) executing memory
copies asynchronously along GPU kernel computations, and
(3) one CUDA stream per GPU stage (a total of 3 for stages
2, 3, & 5) which allow concurrent GPU kernel executions.

CPU threads are responsible for CCF computations. This
design has the following two consequences: (1) the system
minimizes device to host memory transfers as the input to the
CCF stage is a scalar, the result of the max reduction; (2) the
system frees GPU transform memory as early as practical,
thereby initiating the computation of additional transforms.

To better compare CPU and GPU performance, we imple-
mented a Pipelined-CPU version which includes all the mem-
ory mechanisms in its GPU counterpart. The CPU pipeline
consists of three stages: reader, displacement/fft, and book-
keeping. In the future, we will modify this implementation to
create one execution pipeline per CPU socket. The next section
analyzes the run-times of the various implementations and the
Fiji image stitching plugin.

V. RESULTS

For each implementation, we ran the image stitching work-
load (a 42× 59 tile grid) ten times and used the average end-
to-end run time. Table II summarizes these timing results.

The Pipelined-GPU implementation using one GPU com-
pleted the relative displacement computation in 49.7 s; this
is a 11.2x performance improvement over Simple-GPU, cor-
responding to a 12.8x speedup with respect to Simple-CPU.
Adding a second GPU to the Pipelined-GPU execution im-
proves the run time by 1.87x and processes the same grid
in 26.6 s. The improved run time is attributed to instantiating
one execution pipeline per GPU as seen in Fig. 8. The system



Fig. 9. Profile of a 0.2 s Interval of Pipelined-GPU Execution (8× 8 grid)

Speedup CPU

Implementation Time S/CPU ImageJ Threads GPUs

ImageJ/Fiji 3.6 h – 5–6
Simple-CPU 10.6min – 20.3 1 –
MT-CPU 1.6min 6.6 135 16 –
Pipelined-CPU 1.4min 7.5 154 16 –
Simple-GPU 9.3min 1.14 23.2 1 1
Pipelined-GPU 49.7 s 12.8 261 16 1
Pipelined-GPU 26.6 s 23.9 487 16 2

TABLE II
RUN TIMES AND SPEEDUPS FOR A 42× 59 IMAGE GRID.
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Fig. 10. Pipelined-GPU (2 GPUs) vs. CCF Threads

schedules tasks efficiently to fully occupy all CPUs and GPUs,
while staying within memory limits.

The Pipelined-GPU implementation improves on the run-
times of the CPU-only versions. It reduces the execution times
of the Simple-CPU, MT-CPU, and Pipelined-CPU implemen-
tations by factors of 23.9x, 3.61x, and 3.16x respectively.

Fig. 10 illustrates the behavior of the Pipelined-GPU im-
plementation as the number of CCF threads increases when
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Fig. 11. Scalability of Pipelined-CPU Implementation

processing the 42 × 59 grid with two GPU cards. It shows
that increasing the number of CCF threads beyond 2 has a
minimal impact which indicates that performance is limited
by GPU computations.

Fig. 11 illustrates the near-linear strong scaling of the
Pipelined-CPU version as the number of CPU threads is in-
creased when processing the 42×59 grid. The plot shows that
the speedup is almost linear as the thread count increases up to
8, the number of physical cores; the speedup curve changes to
another linear slope between 9 and 16, the number of logical
cores. Furthermore, this behavior is consistent across varying
grid sizes (128 to 1024 tiles per grid) as shown in Fig. 12.
Given that the curve is much flatter when Threads ≥ 8,
we conclude that we are approaching the performance limit
of the evaluation machine and do not anticipate any further
substantial performance improvements by increasing Threads
beyond the number of logical cores (i.e., 16).

The performance of the Pipelined-GPU implementation
compares very favorably with the ImageJ/Fiji stitching plugin.
This plugin is implemented in Java and is “fully multi-threaded
taking advantage of multi-core CPUs” [15]. It computes the
relative displacements of the grid in 3.6 h. In contrast, the
Pipelined-GPU implementation completes the same workload
in 49.7 s when using one GPU and in 26.6 s when using
two GPUs. These times result in 261x and 487x relative



Threads1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tiles
128

256
384

512
640

768
896

1024

Speedup

1

2

3

4

5

6

7

8

9

10
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speedups, which are more than two orders of magnitude.
Such large reductions in execution times are bound to have
a transformative impact on the users of such a tool. At
the very least, image stitching for large data-sets becomes a
quasi-interactive task and enables computationally steerable
experiments centered around optical microscopy.

VI. CONCLUSIONS

We started our effort with the goal of supporting long
running experiments that repeatedly image microscopy plates
at set intervals. These experiments require that the image
stitching tool used be fast enough to allow researchers to ex-
amine a plate’s image, run image analysis tools, and intervene
in the experiment before a plate is imaged again. We believe
that we have achieved this goal with our pipelined imple-
mentations that carefully manage concurrency and memory.
Our Pipelined-GPU implementation stitches a large workload
(a 42 × 59 grid) in under 1min and can take advantage of
multiple CPUs and GPUs; our Pipelined-CPU implementation
also achieves a respectable 1.4min execution time. We further
validated our architecture by running it on a 3 year-old laptop
with an Intel i7-950 (quad-core), 12GB of RAM, and an
NVIDIA GTX 560M card. The laptop processed the 42× 59
grid in acceptable times: 130 s with Pipelined-GPU and 146 s
with Pipelined-CPU.

A. Future Work

One of ImageJ/Fiji’s main advantages is its cross-platform
nature. We are finalizing the development of a new stitching
plugin for ImageJ/Fiji based on our pipeline architecture with
the goal of releasing it along with the standalone C++ and
CUDA versions. The plugin is written in Java and will run
in two modes: one that is pure Java and another that uses
native bindings for the CUDA and FFTW libraries if they
are installed locally. Preliminary benchmarks reveal that the

Fig. 13. Stitched 42×59 image grid (17K×22K pixels, ≈ 1cm×1.4cm),
composed using an overlay blend.

plugin, running in either mode, will have a performance within
a factor of 2–3 of the C++ and CUDA implementations.
We are also prototyping a visualization tool to be packaged
with the plugin that will generate image pyramids for all
the tiles in a grid and render a stitched image at varying
resolutions. Figs. 13 and 14 show the composed image using
our visualization prototype.

We expect that our algorithm can deliver further perfor-
mance improvements with NVIDIA’s Tesla Kepler GK110
GPUs as this new architecture has additional concurrency
capabilities in the hardware. The GK110 architecture features a
hardware-based GPU scheduler (Hyper-Q) that allows multiple
CPU threads to issue work simultaneously to a GPU [23]. The
Pipelined-GPU implementation is currently setup so only one
CPU thread per stage issues GPU kernel invocations. This can
be changed easily to take advantage of Hyper-Q with multiple
CPU threads invoking GPU kernels.

Two performance optimizations that we plan to investigate
are padding image tiles and using real to complex transforms.
Padding image tiles (or trimming them) to have smaller
prime factors (e.g., 1536 × 1536) is known to enhance the
performance of FFTW and cuFFT because the implementa-
tions use divide and conquer approaches. We expect to see
performance benefits when computing the forward and inverse



Fig. 14. Stitched 42× 59 grid with highlighted tiles

FFTs of padded images. The second optimization (using real to
complex FFTs) will further improve performance by doing less
work; it will also reduce the computation’s memory footprint.

The results of the pipeline implementation demonstrate
an effective mechanism for structuring the image stitching
problem. We plan to evaluate its scalability on a machine
with more than 2 GPUs; extracting performance from such a
machine will require peer-to-peer copies between the various
cards. We also plan to extract a general purpose API for the
pipeline, so it can be applied to other problems that can benefit
from the GPU. The tool will provide developers with a method
to overlap disk and PCI express I/O with computation while
staying within strict memory constraints.
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